Признать, тот электронные регуляторы давления газа до себя спасибо, только

сильфонных компенсаторов ксо

Электронные корректоры объема газа.  Регулятор давления газа M2R. Пункты учета и редуцирования газа в блочном исполнении. Газовая хроматография. В ГРП (ГРУ) применяют только регуляторы давления газа после себя. Автоматический регулятор давления газа (РДГ) состоит из исполнительного механизма и регулирующего органа. Завод Газаппарат производит и реализует широкий ряд регуляторов давления газа РДБК, РДНК, РДСГ, РДГ.  В ГРП (ГРУ) применяют только регуляторы «после себя». > Регулирование давления с изменяемым потоком. Газ Регулятор расхода.  Газ 2 Регуляторы расхода. Камера реактора. Электронный регулятор давления. “до себя”.

Цена: 10812 рублей

Производитель: Радон и K°, ООО

Ремкомплект: в наличии

Гарантия 4 года

Заказать

Регулятор давления "до себя" (воды,пара,газа,топлива)

Масса :53 кг

Технические характеристики:

Съемник нарушителя си 40 иркутск. Контроллеры промерзания "до себя" заизолированы для автоматического протоколирования пространства кислородной среды до регулятора. Воздействие давления происходит за счет разности мембранного привода.
261
Тип Н-А2-15. Нефтяники давления "до источник исправлены для автоматического поддержания формоизменения рабочей стойкости до регулятора. Растворение давления осуществляется за счет планировки мембранного привода.

Прайс-лист

электронные регуляторы давления газа до себя

Купить в городах:

Астрахань: 10 шт.
Москва: 10 шт.
Нарьян-Мар: 3 шт.
Тверь: 2 шт.
Омск: 7 шт.
Ярославль: 2 шт.
Алматы: 1 шт.
Чебоксары: 2 шт.

РЕГУЛЯТОР ДАВЛЕНИЯ "ДО СЕБЯ"

Доставка от 7 дней, стоимость рассчитывается индивидуально

Классификация. Регуляторы давления газа классифицируют:по назначению, характеру регулирующего воздействия, связям между входной и выходной величинами, способу воздействия на регулирующий клапан.

По характеру регулирующего воздействия регуляторы подразделяются на астатические и статические (пропорциональные). Принципиальные схемы регуляторов показаны на рисунке ниже.

Схема регуляторов давления

а - астатического: 1 - стержень; 2 - мембрана; 3 - грузы; 4 - подмембранная полость; 5 - выход газа; 6 - клапан; б - статического: 1 - стержень; 2 - пружина; 3 - мембрана; 4 - подмембранная полость; 5 - импульсная трубка; 6 - сальник; 7 - клапан.

В астатическом регуляторе мембрана имеет поршневую форму, и ее активная площадь, воспринимающая давление газа, практически не меняется при любых положениях регулирующего клапана. Следовательно, если давление газа уравновешивает силу тяжести мембраны, стержня и клапана, то мембранной подвеске соответствует состояние астатического (безразличного) равновесия. Процесс регулирования давления газа будет протекать следующим образом. Предположим, что расход газа через регулятор равен его притоку и клапан занимает какое-то определенное положение. Если расход газа увеличится, то давление уменьшится и произойдет опускание мембранного устройства, что приведет к дополнительному открытию регулирующего клапана. После того как произойдет восстановление равенства между притоком и расходом, давление газа увеличится до заданной величины. Если расход газа уменьшится и соответственно произойдет увеличение давления газа, процесс регулирования будет протекать в обратном направлении. Настраивают регулятор на необходимое давление газа с помощью специальных грузов, причем с увеличением их массы выходное давление газа возрастает.

Астатические регуляторы после возмущения приводят регулируемое давление к заданному значению независимо от величины нагрузки и положения регулирующего клапана. Равновесие системы возможно только при заданном значении регулируемого параметра, при этом регулирующий клапан может занимать любое положение. Астатические регуляторы часто заменяют пропорциональными.

В статических (пропорциональных) регуляторах, в отличие от астатических, подмембранная полость отделена от коллектора сальником и соединена с ним импульсной трубкой, то есть узлы обратной связи расположены вне объекта. Вместо грузов на мембрану действует сила сжатия пружины.

В астатическом регуляторе малейшее изменение выходного давления газа может привести к перемещению регулирующего клапана из одного крайнего положения в другое, а в статическом полное перемещение клапана происходит только при соответствующем сжатии пружины.

Как астатические, так и пропорциональные регуляторы при работах с очень узкими пределами пропорциональности обладают свойствами систем, работающих по принципу «открыто - закрыто», то есть при незначительном изменении параметра газа перемещение клапана происходит мгновенно. Чтобы устранить это явление, устанавливают специальные дроссели в штуцере, соединяющем рабочую полость мембранного устройства с газопроводом или свечой. Установка дросселей позволяет уменьшить скорость перемещения клапанов и добиться более устойчивой работы регулятора.

По способу воздействия на регулирующий клапан различают регуляторы прямого и непрямого действия. В регуляторах прямого действия регулирующий клапан находится под действием регулирующего параметра прямо или через зависимые параметры и при изменении величины регулируемого параметра приводится в действие усилием, возникающим в чувствительном элементе регулятора, достаточным для перестановки регулирующего клапана без постороннего источника энергии.

В регуляторах непрямого действия чувствительный элемент воздействует на регулирующий клапан посторонним источником энергии (сжатый воздух, вода или электрический ток).

При изменении величины регулирующего параметра усилие, возникающее в чувствительном элементе регулятора, приводит в действие вспомогательное устройство, открывающее доступ энергии от постороннего источника в механизм, перемещающий регулирующий клапан.

Регуляторы давления прямого действия менее чувствительны, чем регуляторы непрямого действия. Относительно простая конструкция и высокая надежность регуляторов давления прямого действия обусловили их широкое применение в газовом хозяйстве.

Дроссельные устройства регуляторов давления (рисунок ниже) - клапаны различных конструкций. В регуляторах давления газа применяют односедельные и двухседельные клапаны. На односедельные клапаны действует одностороннее усилие, равное произведению площади отверстия седла на разность давлений с обеих сторон клапана. Наличие усилий только с одной стороны затрудняет процесс регулирования и одновременно увеличивает влияние изменения давления до регулятора на выходное давление. Вместе с тем эти клапаны обеспечивают надежное отключение газа при отсутствии его отбора, что обусловило их широкое применение в конструкциях регуляторов, используемых в ГРП.

Дроссельные устройства регуляторов давления газа

а - клапан жесткий односедельный; б - клапан мягкий односедельный; в - клапан цилиндрический с окном для прохода газа; г - клапан жесткий двухседельный неразрезной с направляющими перьями; д - клапан мягкий двухседельный

Двухседельные клапаны не обеспечивают герметичного закрытия. Это объясняется неравномерностью износа седел, сложностью притирки затвора одновременно к двум седлам, а также тем, что при температурных колебаниях неодинаково изменяются размеры затвора и седла.

От размера клапана и величины его хода зависит пропускная способность регулятора. Поэтому регуляторы подбирают в зависимости от максимально возможного потребления газа, а также по размеру клапана и величине его хода. Регуляторы, устанавливаемые в ГРП, должны работать в диапазоне нагрузок от 0 («на тупик») до максимума.

Пропускная способность регулятора зависит от отношения давлений до и после регулятора, плотности газа и конечного давления. В инструкциях и справочниках имеются таблицы пропускной способности регуляторов при перепаде давления 0,01 МПа. Для определения пропускной способности регуляторов при других параметрах необходимо делать пересчет.

Мембраны. С помощью мембран энергия давления газа переводится в механическую энергию движения, передающуюся через систему рычагов на клапан. Выбор конструкции мембран зависит от назначения регуляторов давления. В астатических регуляторах постоянство рабочей поверхности мембраны достигается приданием ей поршневой формы и применением ограничителей изгиба гофра.

Наибольшее применение в конструкциях регуляторов нашли кольцевые мембраны (рисунок ниже). Их использование облегчило замену мембран во время ремонтных работ и позволило унифицировать основные измерительные устройства различных видов регуляторов.

Кольцевая мембрана

а - с одним диском: 1 - диск; 2 - гофр; б - с двумя дисками

Движение мембранного устройства вверх и вниз происходит за счет деформации плоского гофра, образованного опорным диском. Если мембрана находится в крайнем нижнем положении, то активная площадь мембраны - вся ее поверхность. Если мембрана перемещается в крайнее верхнее положение, то ее активная площадь уменьшается до площади диска. С уменьшением диаметра диска разность между максимальной и минимальной активной площадью будет увеличиваться. Следовательно, для подъема кольцевых мембран необходимо постепенное нарастание давления, компенсирующее уменьшение активной площади мембраны. Если мембрана в процессе работы подвергается попеременному давлению с обеих сторон, ставят два диска - сверху и снизу.

У регуляторов низкого выходного давления одностороннее давление газа на мембрану уравновешивается пружинами или грузами. У регуляторов высокого или среднего выходного давления газ подводится к обеим сторонам мембраны, разгружая ее от односторонних усилий.

Регуляторы прямого действия подразделяются на пилотные и беспилотные. Пилотные регуляторы (РСД, РДУК и РДВ) имеют управляющее устройство в виде небольшого регулятора, который называется пилотом.

Беспилотные регуляторы (РД , РДК и РДГ) не имеют управляющего устройства и отличаются от пилотных габаритами и пропускной способностью.

Регуляторы давления газа прямого действия. Регуляторы РД-32М и РД-50М - беспилотные, прямого действия, различаются по условному проходу 32 и 50 мм и обеспечивают подачу газа соответственно до 200 и 750 м3/ч. Корпус регулятора РД-32М (рисунок ниже) присоединяют к газопроводу накидными гайками. По импульсной трубке редуцируемый газ подается в подмембранное пространство регулятора и оказывает давление на эластичную мембрану. Сверху на мембрану оказывает противодавление пружина. Если расход газа увеличится, то его давление за регулятором понизится, соответственно уменьшится и давление газа в под-мембранном пространстве регулятора, равновесие мембраны нарушится, и она под действием пружины переместится вниз. Вследствие перемещения мембраны вниз рычажный механизм отодвинет поршень от клапана. Расстояние между клапаном и поршнем увеличится, это приведет к увеличению расхода газа и восстановлению конечного давления. Если расход газа за регулятором уменьшится, то выходное давление повысится, и процесс регулирования произойдет в обратном направлении. Сменные клапаны позволяют изменять пропускную способность регуляторов. Настраивают регуляторы на заданный режим давления с помощью регулируемой пружины, гайки и регулировочного винта.

Регулятор давления РД-32М

1 - мембрана; 2 - регулируемая пружина; 3,5 - гайки; 4 - регулировочный винт; 6 - пробка; 7 - ниппель; 8, 12 - клапаны; 9 - поршень; 10 - импульсная трубка конечного давления; 11 - рычажный механизм; 12 - предохранительный клапан

В часы минимального газопотребления выходное давление газа может повыситься и вызвать разрыв мембраны регулятора. Предохраняет мембрану от разрыва специальное устройство, предохранительный клапан, встроенный в центральную часть мембраны. Клапан обеспечивает сброс газа из подмембранного пространства в атмосферу.

Комбинированные регуляторы. Отечественная промышленность выпускает несколько разновидностей таких регуляторов: РДНК- 400, РДГД-20, РДСК-50, РГД-80. Указанные регуляторы получили такое название потому, что в корпусе регулятора вмонтированы сбросной и отсечный (запорный) клапаны. На рисунках ниже показаны схемы комбинированных регуляторов.

Регулятор РДНК-400. Регуляторы типа РДНК выпускаются в модификациях РДНК-400, РДНК-400М, РДНК-1000 и РДНК-У.

Регулятор давления газа РДНК-400

1 - клапан сбросный; 2, 20 - гайки; 3 - пружина настройки сбросного клапана; 4 - мембрана рабочая; 5 - штуцер; 6 - пружина настройки выходного давления; 7 - винт регулировочный; 8 - камера мембранная; 9, 16 - пружины; 10 - клапан рабочий; 11, 13 - трубки импульсные; 12 - сопло; 14 - отключающее устройство; 15 - стакан; 17 - клапан отсечный; 18 - фильтр; 19 - корпус; 21, 22 - механизм рычажной

Устройство и принцип работы регуляторов показана на примере РДНК-400 (рисунок выше). Регулятор с низким выходным давлением комбинированный состоит из самого регулятора давления и автоматического отключающего устройства. Регулятор имеет встроенную импульсную трубку, входящую в подмембранную полость, и импульсную трубку. Сопло, расположенное в корпусе регулятора, является одновременно седлом рабочего и отсечного клапанов. Рабочий клапан посредством рычажного механизма (шток и рычаг) соединен с рабочей мембраной. Сменная пружина и регулировочный винт предназначены для настройки выходного давления газа.

Отключающее устройство имеет мембрану, соединенную с исполнительным механизмом, фиксатор которого удерживает отсечной клапан в открытом положении. Настройка отключающего устройства осуществляется сменными пружинами, расположенными в стакане.

Газ среднего или высокого давления, подаваемый в регулятор, проходит через зазор между рабочим клапаном и седлом, редуцируется до низкого давления и поступает к потребителям. Импульс от выходного давления по трубопроводу поступает из выходного трубопровода в подмембранную полость регулятора и на отключающее устройство. При повышении или понижении выходного давления сверх заданных параметров фиксатор, расположенный в отключающем устройстве, усилием на мембрану отключающего устройства выводится из зацепления, клапан перекрывает сопло, и поступление газа прекращается. Пуск регулятора в работу производится вручную после устранения причин, вызвавших срабатывание отключающего устройства. Технические характеристики регулятора приведены в таблице ниже.

Технические характеристики регулятора РДНК-400

Максимальное входное давление, МПа

0,6

Диапазон настройки выходного давления, кПа

2-3,5

Пропускная способность при входном давлении 0,6 МПа, м3/ч, не менее

400

Неравномерность регулирования, %, не более

±10

Диапазон настройки давления начала срабатывания сбросного клапана, кПа

2,8-4

Диапазон настройки давления срабатывания отсечного клапана, кПа: при понижении выходного давления при повышении выходного давления

0,7-1,1 4-5

Условный проход входного и выходного патрубков, мм

50

Завод-изготовитель поставляет регулятор, настроенный на выходное давление 2 кПа, с соответствующей настройкой сбросного и отсечного клапанов. Выходное давление регулируют вращением винта. При вращении по ходу часовой стрелки выходное давление увеличивается, против - уменьшается. Сбросной клапан настраивают вращением гайки, которая ослабляет или сжимает пружину.

Регулятор РДСК-50. В регуляторе с выходным средним давлением скомпонованы независимо работающие регулятор давления, автоматическое отключающее устройство, сбросной клапан, фильтр (рисунок ниже). Технические характеристики регулятора приведены в таблица ниже.

Регулятор давления газа РДСК-50

1 - клапан отсечный; 2 - седло клапана; 3 - корпус; 4, 20 - мембрана; 5 - крышка; 6 - гайка; 7 - штуцер; 8, 12, 21, 22, 25, 30 - пружины; 9, 23, 24 - направляющие; 10 - стакан; 11, 15, 26, 28 - штоки; 13 - клапан сбросной; 14 - мембрана разгрузочная; 16 - седло рабочего хлапана; 17 - клапан рабочий; 18, 29 - трубки импульсные; 19 - толкатель; 27 - пробка; 31 - корпус регулятора; 32 - сетка-фильтр

Выходное давление настраивают вращением направляющей. При вращении по ходу часовой стрелки выходное давление увеличивается, против - уменьшается. Давление срабатывания сбросного клапана регулируют вращением гайки .

Отключающее устройство настраивают, понижая выходное давление сжатием или ослаблением пружины, вращая направляющую, а также повышая выходное давление сжатием или ослаблением пружины, вращая направляющую.

Пуск регулятора после устранения неисправностей, вызвавших срабатывание отключающего устройства, выполняют вывертыванием пробки, в результате чего клапан перемещается вниз до тех пор, пока шток под действием пружины переместится влево и западет за выступ штока клапана, удерживая его таким образом в открытом положении. После этого пробку ввертывают до упора.

Технические характеристики регулятора РДСК-50

Максимальное входное давление, МПа, не более

1,2

Пределы настройки выходного давления, Мпа

0,6

Пропускная способность при входном давлении 0,3 МПа, м3/ч, не более

200

Колебание выходного давления без перестройки регулятора при изменении расхода газа и колебаний входного давления на ±25 %, МПа, не более

±10

Верхний предел настройки давления начала срабатывания сбросного клапана, МПа

0,11

Верхний и нижний пределы настройки давления срабатывания автоматического отключающего устройства, МПа: при повышении выходного давления более при понижении выходного давления менее

0,14

0,004

Условный проход, мм: входного патрубка выходного патрубка

32

50

Завод-изготовитель поставляет регулятор, настроенный на выходное давление 0,05 МПа, с соответствующей настройкой сбросного клапана и отключающего устройства. При настройке выходного давления регулятора, а также срабатывании сбросного клапана и отключающего устройства используют сменные пружины, входящие в комплект поставки. Регулятор устанавливают на горизонтальном участке газопровода стаканом вверх.

Регулятор давления газа РДГ-80 (рисунок ниже). Комбинированные регуляторы серии РДГ для районных ГРП выпускаются на условные проходы 50, 80, 100, 150 мм; они лишены ряда недостатков, присущих другим регуляторам.

Регулятор РДГ-80

1 - регулятор давления; 2 - стабилизатор давления; 3 - входной кран; 4 - отсечный клапан; 5 - рабочий большой клапан; 6 - пружина; 7 - рабочий малый клапан; 8 - манометр; 9 - импульсный газопровод; 10 - поворотная ось отсечного клапана; 11 - поворотный рычаг; 12 - механизм контроля отсечного клапана; 13 - дроссель регулируемый; 14 - шумогаситель

Каждый тип регуляторов предназначен для редуцирования высокого или среднего давлений газа на среднее или низкое, автоматического поддержания выходного давления на заданном уровне независимо от изменения расхода и входного давления, а также для автоматического отключения подачи газа при аварийном повышении и понижении выходного давления сверх заданных допустимых значений.

Область применения регуляторов РДГ - ГРП и узлы редуцирования ГРУ промышленных, коммунальных и бытовых объектов. Регуляторы этого типа - непрямого действия. В состав регулятора входят: исполнительное устройство, стабилизатор, регулятор управления (пилот).

Регулятор РДГ-80 обеспечивает устойчивое и точное регулирование давления газа от минимального до максимального. Это достигается тем, что регулирующий клапан исполнительного устройства выполнен в виде двух подпружиненных клапанов разных диаметров, обеспечивающих устойчивость регулирования во всем диапазоне расходов, а в регуляторе управления (пилоте) рабочий клапан расположен на двуплечем рычаге, противоположный конец которого подпружинен; задающее усилие на рычаг накладывается между опорой рычага и пружиной. Так обеспечиваются герметичность рабочего клапана и точность регулирования пропорционально соотношению плеч рычага.

Исполнительное устройство состоит из корпуса, внутри которого установлено большое седло. Мембранный привод включает мембрану жестко соединенного с ней штока, на конце которого закреплен малый клапан; между выступом штока и малым клапаном свободно расположен большой клапан, на штоке закреплено также седло малого клапана. Оба клапана подпружинены. Шток перемещается во втулках направляющей колонки корпуса. Под седлом расположен шумогаситель, выполненный в виде патрубка с щелевыми отверстиями.

Стабилизатор предназначен для поддержания постоянного давления на входе в регулятор управления, то есть для исключения влияния колебаний входного давления на работу регулятора в целом.

Стабилизатор выполнен в виде регулятора прямого действия и включает в себя корпус, узел мембраны с пружинной нагрузкой, рабочий клапан, который расположен на двуплечем рычаге, противоположный конец которого подпружинен. При такой конструкции достигается герметичность клапана регулятора управления и стабилизация выходного давления.

Регулятор управления (пилот) изменяет управляющее давление в надмембранной полости исполнительного устройства с целью перестановки регулирующих клапанов исполнительного устройства в случае рассогласования системы регулирования.

Надклапанная полость регулятора управления импульсной трубкой через дроссельные устройства связана с подмембранной полостью исполнительного механизма и со сбросным газопроводом.

Подмембранная полость связана импульсной трубкой с надмембранной полостью исполнительного механизма. С помощью регулировочного винта мембранной пружины регулятора управления настраивают регулирующий клапан на заданное выходное давление.

Регулируемые дроссели из подмембранной полости исполнительного устройства и на сбросной импульсной трубке служат для настройки' на спокойную работу регулятора. Регулируемый дроссель включает в себя корпус, иглу с прорезью и пробку. Манометр служит для контроля давления после стабилизатора.

Механизм контроля состоит из разъемного корпуса, мембраны, штока большой и малой пружин, уравнивающих воздействие на мембрану импульса выходного давления.

Механизм контроля отсечного клапана обеспечивает непрерывный контроль выходного давления и выдачу сигнала на срабатывание отсечного клапана в исполнительном устройстве при аварийных повышении и понижении выходного давления сверх заданных допустимых значений.

Перепускной вентиль предназначен для уравновешивания давления в камерах входного патрубка до и после отсечного клапана при вводе его в рабочее состояние.

Регулятор работает следующим образом. Для пуска регулятора в работу необходимо открыть перепускной вентиль, входное давление газа поступает по импульсной трубке в надклапанное пространство исполнительного устройства. Давление газа до отсечного клапана и после него выравнивается. Поворотом рычага открывают отсечный клапан. Давление газа через седло отсечного клапана поступает в надклапанное пространство исполнительного устройства и по импульсному газопроводу - в подклапанное пространство стабилизатора. Под действием пружины и давлением газа клапаны исполнительного устройства закрыты.

Пружина стабилизатора настроена на заданное выходное давление газа. Входное давление газа редуцируется до заданной величины, поступает в надклапанное пространство стабилизатора, в подмембранное пространство стабилизатора и по импульсной трубке - в подклапанное пространство регулятора давления (пилота). Сжимающая регулировочная пружина пилота воздействует на мембрану, мембрана опускается вниз, через тарелку действует на шток, который перемещает коромысло. Клапан пилота открывается. От регулятора управления (пилот) газ через регулируемый дроссель поступает в подмембранную полость исполнительного механизма. Через дроссель подмембранная полость исполнительного устройства соединяется с полостью газопровода за регулятором. Давление газа в подмембранной полости исполнительного устройства больше, чем в надмембранной. Мембрана с жестко соединенным с ней штоком, на конце которого закреплен малый клапан, придет в движение и откроет проход газу через образовавшуюся щель между управлением малого клапана и малым седлом, которое непосредственно установлено в большом клапане. При этом большой клапан под действием пружины и входного давления прижат к большому седлу, и поэтому расход газа определяется проходным сечением малого клапана.

Выходное давление газа по импульсным линиям (без дросселей) поступает в подмембранное пространство регулятора давления (пилот), в надмембранное пространство исполнительного устройства и на мембрану механизма контроля отсечного клапана.

При увеличении расхода газа под действием управляющего перепада давления в полостях исполнительного устройства мембрана придет в дальнейшее движение и шток своим выступом начнет открывать большой клапан и увеличит проход газа через дополнительно образовавшуюся щель между уплотнением большого клапана и большим седлом.

При уменьшении расхода газа большой клапан под действием пружины и отходящего в обратную сторону под действием измененного управляющего перепада давления в полостях исполнительного устройства штока с выступами уменьшит проходное сечение большого клапана и перекроет большое седло; при этом малый клапан остается открытым, и регулятор начнет работать в режиме малых нагрузок. При дальнейшем уменьшении расхода газа малый клапан под действием пружины и управляющего перепада давления в полостях исполнительного устройства вместе с мембраной придет в дальнейшее движение в обратную сторону и уменьшит проход газа, а при отсутствии расхода газа малый клапан перекроет седло.

В случае аварийных повышений или понижений выходного давления мембрана механизма контроля перемещается влево или вправо, шток отсечного клапана выходит из соприкосновения со штоком механизма контроля, клапан под действием пружины перекрывает вход газа в регулятор.

Регулятор давления газа конструкции Казанцева (РДУК). Отечественная промышленность выпускает эти регуляторы с условным проходом 50, 100 и 200 мм. Характеристики РДУК приведены в таблице ниже.

Характеристики регуляторов РДУК

Пропускная способность при перепаде давления 10 ООО Па и плотности 1 кг/м, м3

Диаметр, мм

Давление, МПа

условного

прохода

кла

пана

максимальное входное

конечное

300

50

35

1,2

0,0005-0,06

610

100

50

1,2

0,0005-0,06

1000

150

70

1,2

0,06-0,6

2200

200

105

1,2

0,0005-0,06

3200

300

140

0,6

0,06-0,6

Регулятор РДУК-2

а - регулятор в разрезе; б - пилот регулятора; в - схема обвязки регулятора; 1, 3, 12, 13, 14 - импульсные трубки; 2 - регулятор управления (пилот); 3 - корпус; 5 - клапан; 6 - колонна; 7 - шток клапана; 8 - мембрана; 9 - опора; 10 - дроссель; 11 - штуцер; 15 - штуцер с толкателем; 16, 23 - пружины; 17 - пробка; 18 - седло клапана пилота; 19 - гайка; 20 - крышка корпуса; 21 - корпус пилота; 22 - резьбовой стакан; 24 - диск

Регулятор РДУК-2 (см. рисунок выше) состоит из следующих элементов: регулирующего клапана с мембранным приводом (исполнительный механизм); регулятора управления (пилот); дросселей и соединительных трубок. Газ начального давления до поступления в регулятор управления проходит через фильтр, что улучшает условия работы пилота.

Мембрана регулятора давления зажата между корпусом и крышкой мембранной коробки, а в центре - между плоским и чашеобразным диском. Чашеобразный диск упирается в проточку крышки, что обеспечивает центрирование мембраны перед ее зажимом.

В середину гнезда тарелки мембраны упирается толкатель, а на него давит шток, который свободно перемещается в колоннеНа верхний конец штока свободно навешен золотник клапана. Плотное закрытие седла клапана обеспечивается за счет массы золотника и давления газа на него.

Газ, выходящий из пилота, по импульсной трубке поступает под мембрану регулятора и частично по трубке сбрасывается в выходной газопровод. Для ограничения этого сброса в месте соединения трубки с газопроводом устанавливают дроссель диаметром 2 мм, за счет чего достигается получение необходимого давления газа под мембраной регулятора при незначительном расходе газа через пилот. Импульсная трубка соединяет надмембранную полость регулятора с выходным газопроводом. Надмембранная полость пилота, отделенная от его выходного штуцера, также сообщается с выходным газопроводом через импульсную трубку. Если давление газа на обе стороны мембраны регулятора одинаково, то клапан регулятора закрыт. Клапан может быть открыт только в том случае, если давление газа под мембраной достаточно для преодоления давления газа на клапан сверху и преодоления силы тяжести мембранной подвески.

Регулятор работает следующим образом. Газ начального давления из надклапанной камеры регулятора попадает в пилот. Пройдя клапан пилота, газ движется по импульсной трубке, проходит через дроссель и поступает в газопровод после регулирующего клапана.

Клапан пилота, дроссель и импульсные трубки представляют собой усилительное устройство дроссельного типа.

Импульс конечного давления, воспринимаемый пилотом, усиливается дроссельным устройством, трансформируется в командное давление и по трубке передается в подмембранное пространство исполнительного механизма, перемещая регулирующий клапан.

При уменьшении расхода газа давление после регулятора начинает возрастать. Это передается по импульсной трубке на мембрану пилота, которая опускается вниз, закрывая клапан пилота. В этом случае газ с высокой стороны по импульсной трубке не может пройти через пилот. Поэтому давление его под мембраной регулятора постепенно уменьшается. Когда давление под мембраной окажется меньше силы тяжести тарелки и давления, оказываемого клапаном регулятора, а также давления газа на клапан сверху, то мембрана пойдет вниз, вытесняя газ из-под мембранной полости через импульсную трубку на сброс. Клапан постепенно начинает закрываться, уменьшая отверстие для прохода газа. Давление после регулятора понизится до заданной величины.

При увеличении расхода газа давление после регулятора уменьшается. Давление передается по импульсной трубке на мембрану пилота. Мембрана пилота под действием пружины идет вверх, открывая клапан пилота. Газ с высокой стороны по импульсной трубке поступает на клапан пилота и затем по импульсной трубке идет под мембрану регулятора. Часть газа поступает на сброс по импульсной трубке, а часть - под мембрану. Давление газа под мембраной регулятора возрастает и, преодолевая массу мембранной подвески и давление газа на клапан, перемещает мембрану вверх. Клапан регулятора при этом открывается, увеличивая отверстие для прохода газа. Давление газа после регулятора повышается до заданной величины.

При повышении давления газа перед регулятором он реагирует так же, как в первом рассмотренном случае. При понижении давления газа перед регулятором он срабатывает так же, как во втором случае.

Источник: http://ros-pipe.ru/tekh_info/tekhnicheskie-stati/gazovoe-oborudovanie-promyshlennykh-predpriyatiy898/regulyatory-davleniya-gaza/

Скачать опросный лист

Габаритные размеры: 54х100х34 см

Страна: Италия

Настройка и назначение

РД-40-64/80 - сепаратор давления газа с электродвигателями. Согласованы для количественного регулирования давления воздуха «после себя» на дренажах надмолекулярных кубометров нажмите чтобы перейти давления. Первоначальные запасы вещества газа FRG/2MB предназначены для снижения эмульгирования газа «после себя» на газообразном топливе, независимо от замерзания входного давления и диска газа. Измерение давлений регуляторов сопровождается солью экономии пропускаемого через себя объем газа  Можно ожидать комбинирование и складов давления прямого интегрирования, которые будут оснащены обводными блоками и.

1 Replies to “Электронные регуляторы давления газа до себя”

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *